If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.01q^2+0.30q-105.91=0
a = 0.01; b = 0.30; c = -105.91;
Δ = b2-4ac
Δ = 0.302-4·0.01·(-105.91)
Δ = 4.3264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.30)-\sqrt{4.3264}}{2*0.01}=\frac{-0.3-\sqrt{4.3264}}{0.02} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.30)+\sqrt{4.3264}}{2*0.01}=\frac{-0.3+\sqrt{4.3264}}{0.02} $
| 0=0.01q^2+0.30q-105.91 | | 5x-16=2x+23 | | 12x+19=5x+5 | | Y=-8+1.2x | | -5(x+1)-10=18+2 | | 7c=(108+165) | | 12/3x+6/1=4x+2 | | r/5.13=8 | | X-a+4=a | | 2(4z+14)=108 | | x+(6)=-3 | | (113-29)=14m | | (22+45)c=268 | | 3n=83+46 | | 7x+42=-10 | | 6a=147-45 | | -15x^2+1650x-45000=0 | | -7(-9+2x)=175 | | 3x+17=9x-18 | | 0=-140+96t-16t^2 | | 720=2w(w+4)w | | z/18=4.8 | | t/13=2.39 | | 5x+6+4x=30 | | 31=p/46 | | 23=d/18 | | 7w-6w=5 | | v/8=29 | | 6p/5=9 | | (6x-4)-(2x-8)= | | w3=45 | | 4^(x-2)-5=0 |